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ABSTRACT 
a 4'0 't/ i J  

The optimum-thrust equations for both variable and constant thrust 
are presented. These thrust programs are used to generate rendezvous 
trajectories from the Earth to Mars for various flight times and launch 
dates during the years 1968-71. The manner in which the propulsion 
requirements vary with &ght time and launch date are considered, 
and a comparison of vehicle performance using the variable- and 
constant-thrust programs is presented. The optimization of the pro- 
pulsion system parameters is discussed, and the existence of optimum 
launch dates is interpreted in terms of certain transversality conditions 
derivable from the calculus of variations. A brief comparison of the 
advanced propulsion vehicle and the ballistic vehicle propulsion re- 
quirements is made for Earth-Mars rendezvous trajectories. An appen- 
dix considering the anaiyticai basis for this work is included. 

1. INTRODUCTION 

The emergence of advanced propulsion for interplane- 
tary flights has generated great interest in the application 
of optimization theory to advanced propulsion vehicle 
systems and to trajectory design. It becomes necessary to 
obtain fairly accurate estimates of the payload capabili- 
ties of advanced propulsion vehicles for various inter- 
planetary missions. Results from a series of trajectories 
to the planets Venus and Mars appeared in Ref. 1. An 
optimum Variable-thrust program was used to generate 
these trajectories. 

Certain terminal conditions, moreover, such as the 
orientation of the terminal orbit and the terminal posi- 
tion on the orbit, were left unspecified and, instead, 
corresponding transversality conditions derived from the 
calculus of variations were satisfied. 

This report considers the problem in which all end 
conditions, as determined by the planetary ephemerides, 
are specified, and its main purpose is to show the manner 
in which the propulsion requirements vary both with 
flight time and launch date. This procedure is analogous 
to the problem in ballistic trajectories of determining the 
velocity increments required for interplanetary missions 
(Ref. 2 and 3). In advanced propulsion trajectories, 
however, the propulsion intervals constitute a significant 
portion of the trajectory; therefore, the thrust program 
employed becomes quite important in payload studies, 
and optimization theory as applied to trajectory analysis 
is of considerable utility. A comparison of vehicle per- 
formance will be made between the use of an optimum 
variable-thrust program and an optimum constant-thrust 
program. 
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II. OPTIMUM THRUST EQUATIONS 

In order to develop an optimum-thrust program which 
extremizes some terminal quantity indicative of vehicle 
performance, it is necessary to include the constraints 
of the system. For the power-limited propulsion system 
the constraints are the equations of motion of the vehicle 
and an equation describing the fact that the amount of 
kinetic power contained in the exhaust propellant is con- 
strained. Generally, the kinetic power depends on the 
efficiency of power conversion from the nuclear power- 
plant of the vehicle, and the efficiency, in turn, is depend- 
ent on the exhaust velocity employed. In this treatment, 
the kinetic power is constant, which is the case for the 
constant thrust program since the exhaust velocity is 
constant. The variable thrust program possesses a vari- 
able exhaust velocity; thus, performance figures obtained 
from this program are optimistic for two reasons: (1) the 
thrust program is unconstrained, and ( 2 )  the variation of 
efficiency is neglected. On the other hand, performance 
figures from the constant-thrust program tend to be 
conservative but are more realistic. 

The constraining equations of motion are: 

and the power-limited constraint is 

b + T a , = O  P 

where r is the position vector of the vehicle, V is the 
potential of the force field, a is the thrust acceleration 
with the magnitude 

( 3 )  

The quantity p is the normalized mass of the vehicle 
[ p  ( t o )  = 11, p is twice the kinetic power in the rocket 

2 

exhaust per unit initial mass of the vehicle and is, there- 
fore, a constant dependent on the specific mass and size 
of the powerplant. The quantity c is the exhaust velocity, 
and ap is a switching parameter with the value 1 during 
propulsion periods and 0 during coasting periods. 

A Mayer formulation (see Ref. 4 and 5 )  of the calculus 
of variations has been applied to both the constant and 
variable thrust cases to obtain the optimum thrust equa- 
tions. The optimum thrust equations are ( see Appendix) : 

(4) 
.. 
h+ (h .V)  vv = 0, 
constant h, variable thrust 

a = { c o n y  ( 5 )  
- ap, constant thrust 
A 

where h is the Lagrange multiplier vector, and the con- 
stant in Eq. ( 5 )  is determined from boundary conditions. 
It may be shown that no coasting periods occur in the 
variable-thrust program (Ref. 5, 6, and 7 ) .  In the con- 
stant-thrust program the switching function L( t ) ,  gener- 
iited by the equation 

A L = -  
EL 

determines the periods of propulsion and coast by the 
conditions 

L > O,a, = 1 
( 7 )  

L < O,a, = 0 

In the case where V is explicitly independent of time 
it may be shown that the equations of motion (Eq. 1) 
and the Euler equations (Eq. 4) possess a first integral 
in the form 

+ h -  V V  - + a x =  K2, variable thrust 

+ h VV -ap L = K 2 ,  constant thrust (8 )  
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111. PROPULSION SYSTEM OPTIMIZATION 

By eliminating c from Eq. (2)  and (3) and integrating, 
one obtains 

( 9 )  

the so-called rocket equation for power-limited propul- 
sion systems. The quantity 

t ,  

1% a2dt (10) 

appearing in Eq. (9)  is analogous to the concept of 
characteristic velocity in chemical rocket trajectories and 
is a convenient index of rocket performance. Since in this 
treatmefit, f i  reznks c~nstmt, m y  -+iiiist program maxi- 
mizing p1 also minimizes ]. In the variable thrust pro- 
gram the exhaust velocity isdetermined through Eq. (2),  
(3) ,  and (5). In the constant-thrust program, for a 
particular mission, any exhaust velocity below some 
maximum value yields an optimum trajectory. These 
trajectories possess different lengths of coasting and dif- 

ferent values of J. There exists in general, an optimum 
exhaust velocity yielding a minimum J. It is shown in 
Ref. 5 and the Appendix that the condition 

guarantees an extremal in J with respect to the exhaust 
velocity for the constant-thrust program. 

It turns out that Jmin is nearly invariant to the value 
of p for feasible missions (Ref. S), which is its principal 
asset as an index of rocket performance. In particular, by 
fixing c and finding the optimum initial thrust accelera- 
tion which minimizes J one obtains nearly the same value 
of J n l i n  (generally within 1% ). The condition for an 
extremal in J for this process is given by 

a ( A - 4 )  = O  (12)  [ 1:: 
Both procedures as indicated in Eq. (11 ) and ( 12) have 
been employed in the numerical results to follow. 

3 
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IV. MISSIONS AND TERMINAL CONDITIONS 

The position and velocity coordinates must satisfy 
specified values or functions at both end points of the 
rendezvous trajectory. In planetary-rendezvous missions, 
six terminal quantities must be specified at each end 
point. In Ref. 1, it was described how these quantities 
were grouped into five orbital quantities which determine 
the shape and orientation of the terminal ellipse and are 
essentially time-invariant, and one time-varying quantity 
indicating the rendezvous position on the terminal 
ellipse. A description of these quantities is contained in 
Ref. 1. 

It was also shown in Ref. 1 and 5 (see Appendix) that 
for each terminal condition left unspecified there results 
a corresponding transversality condition to be satisfied 
at the end point, instead. Satisfying these transversality 
conditions yields extremals in the quantity being opti- 
mized with respect to the unspecified terminal conditions. 
In particular, it was shown that if the rendezvous position 
(true anomaly, say) on the terminal ellipse is left un- 
specified at either end point the transversality condition 

i s ;  + h.VV = 0 (13 )  

should be satisfied at the corresponding end point(s). 
If, in addition, the transfer angle between the initial and 

final point of the trajectory is unspecified then the z-com- 
ponent of the constant vector K,, given by 

K, = r X h - X h ( 1 4 )  
must be zero. 

The z-direction is perpendicular to the plane containing 
the transfer angle (the angle 0 as defined in Ref. 1 ) .  
Equation (14) holds in any central force field and the 
z-component of K,, is the same constant K , ,  appearing in 
Ref. 1 in the spherical coordinate formulation of the 
Euler-Lagrange equations. These two transversality con- 
ditions will be used to interpret the behavior of the per- 
formance requirements with launch date. One further 
transversality condition will be used in the sequel. Sup- 
pose the initial and final conditions are determined by 
ephemerides and are, therefore, functions only of the 
launch and arrival dates, respectively. It is shown in the 
appendix that if the launch date t,,, is unspecified for a 
fixed flight time, satisfying the transversality condition 

~ . ~ + h . O V ] " = O  to ( 1 5 )  

yields an extrema1 in the quantity being optimized with 
respect to launch date. 
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V. INTERPLANETARY TRAJECTORIES 

The optimum-thrust equations, the constraining equa- 
tions, and various ancillary equations have been pro- 
grammed in three dimensions for numerical solution on 
an IBM 7090. Equation (8) is used to check the accu- 
racy of the numerical integrations. A Newton-Raphson 
(Ref. 8) search method has been used to obtain con- 
verged trajectories with specified boundary conditions. 
By the use of this method in conjunction with certain 
prediction schemes (Ref. 8) it has been possible to gen- 
erate wholesale amounts of trajectories with only a 
moderate consumption of machine time. By this tech- 
nique, the indirect method of the calculus of variation 
has been eminently successful when applied to inter- 
planetary trajectories, even in three dimensions where 
six and sometimes seven quantities are specified at the 
final point. 

The results from a series of three-dimensional rendez- 
vous trajectories from Earth to Mars are presented. These 
trajectories utilize the actual positions and velocities of 
these planets during the era 1968-1971 as initial and final 
conditions. Only the gravitational field of the Sun was 
included in these calculations. As an example of the 
nature of these trajectories Fig. 1 shows three trajec- 
tories of the same flight time launched at different dates 
during the synodic era, 1970-1971. The variable thrust 

~ \MAY 13,1971 /I’ 

‘ Y h R C H  18.1971 / 
10-2 m/sec‘ 

Fig. 1. Mars rendezvous trajectories, 184-day flight 
time, variable-thrust program, ecliptic projection 

program was used to generate these trajectories, and the 
arrows on the trajectories indicate the direction and mag- 
nitude of the thrust acceleration. This figure is an ecliptic 
projection; the effect of the third dimension is small and 
has been discussed in Ref. 1. Figure 2 shows the same 
trajectories generated by the constant thrust-program, 
and the similarities should be noted. These trajectories 
possess an optimum coast period in the sense that Eq. 
(11) is satisfied for a fixed value of /3 of 100.0 m2/secs; 
the periods of coast have been indicated. The 9/15/70 
and 10/12/71 trajectories are probably not feasible mis- 
sions; the thrust acceleration vector at the final point of 
these two trajectories in Fig. 2 has increased to about 
twice the size of the initial value, indicating that about 
half the vehicle mass has been depleted. This is about 
the maximum mass loss that can be sustained by an 
advanced propulsion vehicle and still deliver a si@- 
cant payload. 

Fig. 2. Mars rendezvous trajectories, 184-day flight 
time, constant-thrust program with optimum 

coast, ecliptic projection 

A series of trajectories with different launch dates and 
flight times has been obtained. Figure 3 shows the varia- 
tion of J with heliocentric launch date for many flight 
times using the variable-thrust program. With these fig- 
ures it is possible to determine the “launch period” which 
is available for given maximum value of J and a specified 
range of flight times. At the launch date where mini- 

5 
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n x s 
5 
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E 

1971 

LAUNCH DATE 

1970 1971 

LAUNCH DATE 

Fig. 3. Earth-Mars rendezvous trajectories, variable-thrust program, a'& (m2/sec3) I" 
6 
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mum ] occurs for a given flight time, the transversality 
condition in Eq. (15) is satisfied. The 5/13/71 trajectory 
shown in Fig. 1 and 2 has nearly the optimum launch 
date for a 184-day flight time and for this synodic era. 

Figure 4 exhibits contours of equal J with flight time 
versus heliocentric launch date. The minima of these 
curves correspond to minimum-time trajectories for a 
given value of J and the transversality condition in 
Eq. (15) is also satisfied at this point. The locus of 
minimum flight for a given J will pass, for zero flight 
time, near the date of Earth-Mars opposition which is 
about 8/10/71. 

The curves in Fig. 3 are not unique because there exist 
classes of trajectories yielding extremals in J which, for 
a given launch date and flight time, rendezvous Mars 

REVISION NO. 1 

after executing an arbitrary number of circuits around 
the Sun either in the forward or retrograde directions. 
Of particular interest is that class of trajectories making 
one less circuit around the Sun and which corresponds to 
the optimum set in the preceding synodic era of 1969, 
just as the ones shown are optimum for the 1971 era. For 
a given flight time there clearly exists a launch date 
which is a trade-off point and which, for earl& dates, 
the optimum path is obtained by subtracting 2~ from the 
transit angle required to rendezvous Mars. Figure 5 
shows an example from each of these two classes of tra- 
jectories using a variable thrust program. Both of these 
trajectories have the same flight time and possess the 
same value of J but utilize radically different thrust pro- 
grams in carrying out the mission. 

Figure 6 is a semi-log plot of J versus launch date for 
both the 1969 and 1971 synodic eras. Both classes of tra- 

> v z  
o w  I - +  

w o  
v) 

2 0 %  
n o  g z *  3 4 x  7 L f 4 Z - -  4 

E I  m a  
w 4  z 4 > v  t 5  0 

> d 2 z o  

1970 1971 

LAUNCH DATE 

Fig. 4. Earth-Mars rendezvous trajectories, variable-thrust program, flight time vs launch date for 

7 
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Fig. 5. Mars optimum rendezvous trajectories with equal 

~ " a ' d t ,  flight time and launch date, 184-day flight time, 
variable- thrust program 

jectories are shown on this figure, and the trade-off points 
in launch date are clearly seen. The trajectories of the 
left-hand wing of the 1971 class appearing in 1969-70 
in Fig. 6 are probably of academic interest only since 
the values of J for these curves are so high. For the 
presently estimated state-of-the-art of advanced propul- 
sion technology, missions with values of J greater than 
around 50 m3/sec2 are probably not feasible. The local 
extremals in J with launch date which appear in the 
wings also fulfill the condition in Eq. (15). These tra- 
jectories, typically, fall in toward the Sun upon leaving 
the Earth, making a circuit around the Sun and then 
head out toward Mars. 

The increased steepness on the ascending branches of 
these curves may be explained in terms of the decreasing 
transit angle of the trajectory with increasing launch 
date as shown in Fig. 1 and 2. For launch dates past 

1.0 ~ ~ ~ ~ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 I l I I 1  

21222526282931 I 3 4 6 7 8 12 13 15 16 18 I920222325262731 2 3 5 6 7 9 1012 13 14 18 19 21 22242526282931DAY 
I 2 3 4 5 6 7 9 IO I l l 2  I 2 3 4 5 6 7 8 9 10 I1 12 I 2 3 5 6 7 8 9 IO I I  12 I 2 3 4 5 6 7 8 9 l o l l  l2MONTH 
68 69 70 71 YEAR 

LAUNCH DATE 

Fig. 6. Earth-Mars rendezvous trajectories, variable-thrust program, a'df vs launch date for constant 
flight time, 1968-1972 

8 
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the optimum point the percentage change in transit 
angle is greater than for equally distant launch dates 
preceding the optimum point. As the positions of 
Earth at launch and hlars at arrival approach opposition, 
a more radical thrust program (as indicated in the 
10/11/71 trajectory) than the program for optimal 
transfer is required. This same effect occurs in ballistic 
trajectories. 

The year 1971 is a “vintage year” for advanced pro- 
pulsion trajectories ( and also ballistic trajectories) in 
the sense that the minima of these curves possess smaller 
values for this year than they do for immediately pre- 
ceding or succeeding synodic eras. Notice in Fig. 6 that 
the minima in 1969 lie at a higher value of J than do the 
corresponding minima in 1971. This phenomenon can be 
interpreted in terms of the fact that for 1971, the trans- 
versality condition in Eq. (13) is nearly satisfied for all 
flight times at both the initial and final points of the 
LIdjt;utuq ai the upiiiuuiii launch dates. Searching for 
the optimum synodic era is tantamount to removing the 
coupling supplied by the ephemerides between planetary 
positions and launch and arrival dates. In this case, the 
positions on the initial and final ellipses become unspeci- 
fied, and Eq. (15) decomposes into Eq. (13) which 
must be satisfied at both terminal points. (See Appen- 
dix.) In 1971 the Earth-Mars distance at opposition is 
smaller than in neighboring synodic eras-this phenom- 
enon repeats approximately every fifteen years, or every 
seven synodic periods. It is known, however, that the 
optimum point of rendezvous at Mars is not at perihelion 
but rather at some point past perihelion where the radial 
velocity is, in general, outward (see Ref. 9) .  

In order to isolate the range of variation of minimum J 
with synodic era, a series of trajectories was run in 
which the transversality condition in Eq. (13) was satis- 
fied at both terminal points. Since the orbit of the Earth 
is nearly circular, this approximation was made in these 
computations. In this case, it can be shown (see Appen- 
dix) that Eq. (13) implies that the z-component of K, is 
zero simplifying the analysis, somewhat. Figure 7 shows 
the variation in J with flight time for Mars rendezvous 
trajectories in which Eq. (13) is satisfied at the final 
point of the trajectory and the constant KIz is zero. Both 
local minima and local maxima occur when these con- 
ditions are satisfied. The lower triplet of curves corre- 
sponds to rendezvous at the optimum orbital point and 
the upper set corresponds to rendezvous at the least 
optimum point, which generally is approximately 180 deg 
away from the optimum point. The optimum rendezvous 
points are functions of flight time (Ref. 9). The varia- 

I I I I I i 
1 I I I I 1 

I I I 

L I I I I I I I I I 

1 OWRIABLETHRUSTPROGRAM - I 

I \\\ \y\ I I I 1 
loo 

I O  

.I.. , . . 

FLIGHT TIME 7; days 

Fig. 7. Earth-Mars rendezvous trajectories a2dt vs I“ 
flight time for optimums and least-optimum 

rendezvous conditions 

tions of J with flight time using a constant thrust pro- 
gram with optimum coast and no coast are also shown 
on this figure and will be discussed shortly. The upper 
and lower variable thrust curves shown on Fig. 7 bound 
the range of variation of minimum J with synodic period 
using a variable thrust program. It should be observed 
that the minima of the 1971 curves lie almost exactly 
along the lower curve in Fig. 7. At three or four synodic 
periods before or after 1971, the Earth-Mars configur- 
ation at optimum launch date is such that trajectories 
rendezvous near the least optimum point and the minima 
therefore lie near the upper variable thrust curve in 
Fig. 7. 

The estimates of propellant requirement for heliocen- 
tric transfer as given in Fig. 3 through 6 tend to be 
slightly conservative because of the neglect of the masses 
of the departure and arrival planets. In spiralling away 

9 
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from the Earth, for example, the geocentric velocity at 
escape is, typically, around 1 km/sec. It may be shown 
(Ref. 9 )  that the velocity at escape is proportional to 
the fourth root of the thrust acceleration and the gravi- 
tational constant of the central planet, so the velocity at 
escape changes little with the thrust acceleration em- 
ployed. In any case, this velocity, although small com- 
pared to the 30 km/sec orbital velocity of the Earth, can 
be used, if properly directed, to obtain a reduction in 
the J required for the heliocentric portion of the flight. 
Preliminary studies suggest that approximately 15 % 
reduction in ] for the heliocentric flight can be obtained 
by taking the masses of the departure and arrival planets 
into account. 

1 0  

Finally, it is interesting to compare the propulsion 
requirements for an advanced propulsion vehicle with 
those for a ballistic vehicle. Figure 8 shows the sum of 
the geocentric and Mars-centered hyperbolic-excess 
speeds versus launch date for various flight times. This 
figure is obtained from results appearing in Ref. 3 in 
which heliocentric conics were fitted through the Earth 
and Mars as explained in Ref. 2 and 3. The similarities 
between Fig. 3 and 8 should be noted. For a given flight 
time, the optimum launch dates are approximately the 
same for the two types of trajectories discussed; however, 
the “firing period for the advanced propulsion vehicle 
is somewhat wider than the “firing period for the bal- 
listic vehicle. 
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VI. COMPARISON OF VARIABLE- AND CONSTANT-THRUST PROGRAMS 

0.699 
0.755 
0.809 
0.856 
0.895 
0.922 
0.930 
0.932 
0.917 
0.881 
0.826 
0.755 
0.671 
0.626 

From the curves in Fig. 7 the degradation in vehicle 
performance resulting from using a less optimum thrust 
program is easily assessed. The constant-thrust curves 
were generated using a fixed exhaust velocity of 50,000 
m/sec. The optimum coast curves were obtained by 
satisfying Eq. (12). As stated earlier, J is insensitive for 
feasible missions to the values of c or p employed, vary- 
ing less than 10% for missions with more than about half 
the mass of the vehicle remaining at the final point (see 
Table 1 or consult Ref. 5). In this figure the increase in J 
in the constant-thrust program with optimum coast is 
about 15% over the variable thrust program. This cor- 
responds, typically, to about a 3% decrease in p, as may 
be verified from Eq. (9) ;  that is, for small variations 

2/14 45.1 65 
312 33.714 
3 /18  24.379 
413 17.096 
4 / 1 9  1 1.762 
515 8.334 
5 /13  7.414 
5 /21  7.161 
616 8.801 
6/22 13.023 
718 20.003 
7/24 30.289 

44.588 
'I9 8/17 53.492 

For trajectories launched at dates other than the opti- 
mum launch date, the percentage difference in J between 
the two thrust programs varies somewhat but ranges 
from 10 to 30%. Table 1 illustrates the difference be- 
tween these two programs for various launch dates for 
a 184-day flight. The transversality condition in Eq. (11) 
is satisfied in the constant-thrust program using values 
for p of 100 mz/sec3 and infinity (constant-thrust accel- 
eration). In addition, the results from a corresponding 
set of two-dimensional trajectories are presented to show 
the difference between two and three-dimensional anal- 
ysis for interplanetary trajectories. The differences are 
small as already pointed out in Ref. 1. The largest effect 
occurs near the optimal launch date which reflects the 
fact that the additional propulsion requirement for the 
out-of-the ecliptic dimension is relatively insensitive to 
the launch date. 

42.864 
32.171 
23.431 
16.567 
1 1.498 

8.225 
7.364 
7.171 
8.942 

13.401 
20.9 14 
32.339 
48.920 
59.659 

The Variable-thrust program has been used in the 
majority of the numerical computations for several rea- 
sons. The performance results constitute a unique upper 
bound independent of the propulsion system design; the 
computation time is generally less than with the constant 
thrust program because (1) the dimension of the 
iteration matrix is smaller since no propulsion system 
optimization is required and ( 2)  the variable-thrust 
equations seem somewhat more stable, computationally, 
and converge more rapidly. The use of a constant-thrust 
acceleration program (infinite p ) with optimum coast 

Table 1. Differences between constant- and variable- 
thrust programs for 184-day flight 

Constant thrust Variable 
launch thrust 

(1 971 I 

2/14 

312 
3 /18  

413 
4/19 

515 
5 /13  
5/21 

616 
6 /22  

718 
7 /24  

819 
8/17 

0.700 
0.757 
0.810 
0.858 
0.897 
0.924 
0.93 I 
0.933 
0.91 8 
0.882 
0.827 
0.756 
0.672 
0.626 

37.373 
27.733 
19.931 
13.938 

9.703 
7.187 
6.576 
6.406 
7.459 

10.558 
16.046 
24.395 
36.21 7 
43.648 

37.230 
27.597 
19.796 
13.798 

9.555 
7.032 
6.4 18 
6.247 
7.303 

10.413 
15.91 8 
24.292 
36.1 39 
43.584 

also has the advantages of being independent of the 
propulsion system design and yields more conservative 
performance results. Experience has shown that this 
program is nearly as stable and economical as the 
variable-thrust program and requires only one additional 
dimension in the iteration matrix, namely, the fulfillment 
of Eq. (12) at the final point of the trajectory. The 
present policy at JPL in parametric mission feasibility 
studies is to employ both of these programs to obtain 
performance figures which bracket the performance 
capabilities of an actual advanced propulsion vehicle. 
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APPENDIX 
Analytical Basis for Thrust Equations 

The analytical basis for most of the equations appear- 
ing in the text has been discussed in Ref. 5 and will, 
consequently, only be reviewed at this time with the 
emphasis being placed on new results. A Mayer formu- 
lation (Ref. 4 )  of the calculus of variations has been 
applied to the problem of obtaining the optimum thrust 
equations which extremize some function of the end 
conditions. 

Let q j (  t )  denote both the state and the control var- 
iables of the problem ( i  = 1,2,..-,  n ) .  Let the constrain- 
ing relations be denoted by the functions 

G i ( q j , q j , t , t o r t l , ~ v )  = O  i = l , 2 ; * . , m < n  
(A-1) 

and let 
pliers. Let F be a function defined by 

( t ) be a set of time-dependent Lagrange multi- 

where the summation rule is employed. The quantity to 
be extremized is given by 

1 = I  (qj( t l>,qj( to) , to , t l ,  ~ v )  (A-3) 

that is, a function of the variables at the end points only 
and an arbitrary number of parameters K ~ (  Y = 1 ,2 , - - - ,  r ) .  
As necessary conditions for extremizing J, the qj must 
satisfy the Euler-Lagrange equations given by 

at all points along the trajectory except at comers, i.e., 
points of discontinuity in one or more of the qj .  Further, 
at such corners the Weierstrass-Erdmann corner condi- 
tions must hold, namely, 

xiscontinuous j =  1,2,". ,n (A-5) 
a$j 

(A-6) F - - q j  is continuous 

If the constraining functions are not explicit functions of 
time, a first integral of the Euler-Lagrange equation is 

a F  
aqj 

a F  . F - - qj  = constant 
aqj 

(A-7 ) 

One additional tool from the calculus of variations will 
be needed in dealing with corners, namely, the Weier- 

strass E-function. This function yields a further necessary 
condition for the minimization of J by the inequality 

E = F(qi*, * * .  , qn*, qi*,. . * ,  qn* 1 - F ( q 1 , .  2 qn, 41, ' *. i n )  

- (ij* - 

The qj* is an admissible value in the vicinity of qj. For 
continuous variables q j x  = qj; however, for discontinu- 
ous variables qj* may take on any value consistent with 
the specified bounds. Using the constraining relations in 
Eq. ( 1 ). and ( 2 ) ,  (with Eq. 1 replaced by two first-order 
equations) in conjunction with the above theory one 
obtains the optimum thrust equations as described by 
Eq. (4) through (8) .  The variable-thrust program is 
sbtainec! by a!!owing c io be an unconstrained variable, 
the constant thrust program results from holding c fixed. 

A. Transversality Conditions 

first variation of J 
Since J possesses an extrema1 value it follows that the 

The terminal variations, dt,, atl, d q i ( t o ) ,  dqi ( t l )  and dKv 
are not independent but are related through the con- 
straining equations and certain additional boundary 
conditions expressed in the form 

Aj(qi ( t l )  ,qi ( t o )  , t i ,  t o , ~ v )  = 0, j = 1,2,.'.,p 5 2% + r f 1 

(A-10) 
It follows that 

(A-11) 

If the rank of the system of linear equations in the varia- 
tions appearing in Eq. (A-9) and (A-11) is 2n + r + 2, 
then the problem is essentially one with fixed end-points. 
If the boundary conditions, constraining equations, and 
parameters are compatible SO that a solution exists, there 
is an optimum solution (or, at least a stationary one) for 
which J is extremized. The solution of the differential 
equations in Eq. (A-1) and (A-4) in conjunction with 
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Eq. (A-3) and (A-10) serves to completely define the 
problem in this case and no further optimization is 
available. 

On the other hand, a rank of Eq. (A-9) and (A-11) 
which is less than 2n + r + 2 implies that the boundary 
values of certain variables are undetermined and further 
extremization of J may be accomplished by choosing the 
appropriate values for the undetermined boundary val- 
ues. The Euler-Lagrange equations were obtained from 

setting the first variation of to zero and it fol- 

lows at the terminal points1 

Fdt 4” 

(A-12)  

The &variation is obtained while t is held fixed and con- 
sequently (see Sketch A )  at a terminal point 

6qi = dqi - q i  dt (A-13) 
and the condition for extremality to be satisfied at the 
boundaries becomes 

Equation ( A-14 ) is the classical transversality condition 
(see Ref. 4 )  with the additional integral term due to the 
parameters K ~ ;  it assumes a nontrivial form when the 
rank of the boundary conditions is less than 2n + T + 1. 

‘Although the term Fdt in Eq. (A-12) is identically zero in the 
Mayer formulation, it is formally retained here since this analysis is 
applicable with little modification to the Lagrange and Bolza for- 
mulations where, in general, this term is nonzero. 

The simultaneous solution of Eqs. (A-9),  ( A - l l ) ,  and 
(A-14) yields the conditions on the terminal quantities 
resulting in an extremal in 1. If certain terminal quan- 
tities are undetermined there results a corresponding 
transversality expression, in effect, for each absent termi- 
nal quantity. Satisfying a transversality expression yields 
an extremal in J with respect to the corresponding absent 
terminal quantity. An expedient way to solve this system 
of equations is to adjoin Eq. (A-9) and (A-11) to Eq. 
(A-14) in the usual manner through the use of Lagrange 
multiplier constants (see Ref. 5). 

0. Propulsion System Optimization 
The above theory will now be used to present a deriva- 

tion of Eq. (12)  and (13)  which differs, somewhat, from 
the method employed in Ref. 5. For the constant-thrust 
program and for a specified value of p there exists, in 
general, an optimum value of the parameter, c, such that 

J = P ( i  - - I )  (A-15) 

is minimized and, therefore, p1 is maximized. In the usual 
case where none of the boundary conditions involves the 
exhaust velocity and since c does not appear in Eq. 
(A-15), the quantity dc is arbitrary and Eq. (A-14) yields 

(A-16) 

where the constraining relations in Eq. ( 1 )  and ( 2 )  have 
been incorporated into F .  This condition guarantees 
an extremal in J with respect to c. 

For the alternate optimization procedure of minimizing 
J with respect to initial thrust acceleration a0,for a fixed c, 
it is convenient to write J in the form 

J = cuo ($ - 1 )  (A-17) 

by use of Eq. ( 3 ) .  If, again, the assumption is made that 
the boundary conditions involve neither a, nor pl, then 
duo and dpl are independent from the remainder of the 
terminal quantities and Eq. (A-9) and (A-14) yield for 
the minimization of J with respect to a,, respectively 

(A-18) 
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The quantity dp(  t o )  is zero since po is fixed at the value 1. 
If the quantity p is replaced by a0c in Eq. ( 2 )  and (3) 
and the resulting modified constraining relations are used 
in F, it will be found that the above system of equations 
yields 

(A-19) 

as a necessary condition for an extrema1 in J with respect 
to a, for a fixed e. 

C. Terrninul Conditions 
Consider the case in which the kinematic state vari- 

ables are specified at both ends of the trajectory by 
explicit functions of time, which in the case of planetary 
rendezvous are simply the ephemerides of the departure 
and arrival planets. In Cartesian coordinates the positions 
and velocities x i ,  ui at the terminal points may be ex- 
pressed in the form 

The superscripts 0 and 1 denote the functions correspond- 
ing to the ephemerides of the departure and arrival 
planets, respectively. Furthermore, suppose the flight 
time t ,  - to, is held fixed but the launch date to is not 
specified. In this case, fourteen boundary conditions have 
been specified. (These are Eq. A-20, fixed flight time and 
initial mass of unity. ) The launch date and the final mass 
are unspecified and, consequently, there is one trans- 
versality condition available which holds at the optimum 
launch date extremizing J. Any parameters I(”, which 
might exist, are assumed to not appear in the boundary 
conditions and are, therefore, uncoupled from the kine- 
matic variables and need not be considered in deriving 
the transversality condition for optimum launch date. 
In Cartesian coordinates the kinematic constraining equa- 
tions are 

ai = 0 = Gi,.p. - i .  = 0 = G. &+- -  % I  zc37 axi 
(A-21) 

and it follows that the Lagrange multipliers are 

where the last relation follows from the Euler-Lagrange 
equations. From Eq. (A-20) and the constraint of con- 
stant ftight time. 

REVISION NO. 1 

1 d A y )  = dx; ( t ” )  - ui (t”) dt, = 0 

dAf=; = d v ; ( t , )  - t y ) ( t y ) d t y = o  “ = o , i  (A-23) 

dt1 - dto = 0 

Using these results in Eq. (A-11) and (A-14) and 
employing the fact that Eq. (A-7) holds, one obtains 

(Ai  Gy)  - A. V . )  , I t , -  ( A i ~ j o ’ - ~ i ~ i ) l ~ o = O  (A-24) 

Since the planets travel in the same potential field as the 
vehicle it follows, using vector form, that the condition 

(A-25) 

is the transversality condition for optimum launch date. 

Although the use of Cartesian coordinates in many 
cases allows simple derivations as above, this coordinate 
system sometimes tends to obscure the inherent sym- 
metries of the problem. In Ref. 2 a spherical coordinate 
system has bee11 employed and the kinematic boundary 
conditions have been expressed in terms of the orbital 
elements E, h, i, O, 0, and +. (See Fig. 2 and Eq. 17 
through 22 of Ref. 1 . )  It was stated (and it may be veri- 
fied using Eq. A-11 and A-14) that if the position on the 
terminal orbit $, is left unspecified but with fixed flight 
time (and no dependence on launch date) the trans- 
versality condition which should be satisfied for optimum 
rendezvous point (and least-optimum, also) was given by 

(A-26) M + N + K , ~ C ~ ~ + = O  h 

where these symbols are defined in Ref. 1. Using Eq. (17) 
of Ref. 1 and Eq. ( 8 )  of this report, it follows that this 
condition is equivalent to 

(is; + h.  VV) I tv = 0 Y = 0,l (A-27) 

Using orbital elements and including a launch date 
dependency, only the quantity + is a function of the 
launch and arrival dates through the ephemerides and 
may be expressed in the form 

$ ( t o )  - +(O)  ( t o )  = 0; +(tl)  - + ( I )  ( t l )  = 0 
(A-28) 

It is clear that Eq. (A-25) must still hold for optimum 
launch date. However, if one passes through synodic eras 
seeking the optimum synodic era, this is tantamount to 
removing the coupling between orbital positions and 
launch and arrival dates in Eq. (A-28); the terminal 
values of + are, in effect, unspecified and it follows that 
Eq. (A-25) decomposes into the two conditions in Eq. 
(A-27) which holds in the optimum synodic era at the 
optimum launch date in that synodic era. In actuality, 
Eq. (A-27) is never exactly satisfied at both the initial 
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and final point, but in the year 1971 these conditions are 
nearly met. 

If either the initial or final orbit is circular and the launch 
case dependency is removed, it is unnecessary to specify 
the transit angle e( t ,) - e( to) .  In the spherical coordinate 
formulation of Ref. 1 the quantity r2 cos 4 (dF/de)  is a 
constant ( K , )  due to cyclic nature of the variable 8. 
If e does not explicitly appear in the boundary conditions 
of Eq. (A-11) nor in J, it follows from Eq. (A-14) that Kl 
is zero. Consequently, if the terminal orbital position and 
the transit angle e ( tl) - 8 ( t o ) ,  (or alternately, the longi- 
tude of the line of nodes a) are unspecified it follows 
from Eq. (A-26) that both Eq. (A-27) and a zero value 
for K ,  are implied. 

It should be obvious that there are any number of 
transversality conditions for this problem which may be 
developed for each unspecified variable. As a final 
example, consider the problem of finding the optimum 
launch date for any flight time when the transit angle is 
held fixed. One may draw curves of constant transit angle 
on Fig. 4. These curves depart slightly from straight lines 
because of the planetary eccentricities but are sloped 
upward and to the right, this is, increasing flight time 
with increasing launch date. As one travels along one of 
these curves there is an optimum launch date and flight 
time corresponding to a minimum J. Using the sole 
constraint that e ( t , )  - e ( t o )  is a constant it may be 
verified that the condition 

[(K,+ ~ - ; + X - O V ) & '  = O  (A-29) 1: 
yields the optimum launch date. 

D. First Order Variations in J 
For simplicity in the algebra, suppose that ( 1 )  the 

initial values of all the state variables are specified and 
( 2 )  the boundary conditions Ai specify the final values 
of certain state variables and parameters leaving the 
remainder independent. These simplifications do not 
seriously affect the reasoning to follow. In this case Eq. 
(A-9) and (A-14) become 

and 

(A-31) 

These two linear equations in the terminal variations 
are generally of rank 2 affording a relationship between 
the terminal variations. By combining Eq. (A-30) and 
( A-31 ) one obtains expressions for the first-order varia- 
tion of J with respect to the various unspecified terminal 
quantities. 

As examples, consider the power-limited system with 
J = pi and all the remaining state variables and param- 
eters specified with the exception of c. It may be easily 
shown that the variation in pl with respect to c is 
given by 

In a similar fashion with J given by Eq. (A-17), it may 
be shown that the variation in J with respect to a, is 
given by 

As another type of example, suppose J is to be ex- 
tremized with respect to all the unspecified terminal 
quantities, in which case, dJ = 0 in Eq. (A-30). It  fol- 
lows at tl 

a F  a i  
- pqi -. aF . a i  - 

- aii 3 = .s," g d t  
aJ - 

P. -- aqi aqi at, 
(A-34) 

where p is an arbitrary proportionality constant which, 
for convenience, may be set to equal 1 by the appropri- 
ate scaling of the Lagrange multipliers defined in Eq. 
(A-2) .  Let perturbations or variations of the state vari- 
ables from the optimum values occur at some point on 
the trajectory earlier than t, and denote these variations 
by 6qi.  Then by Eq. (A-14) and (A-34), the variation 
in J due to these perturbations is given by 

(A-35) 

where it is assumed that the original boundary condi- 
tions are still satisfied. Equation (A-35) is a valuable 
expression in guidance considerations since it affords a 
means of estimating the degradation in vehicle perform- 
ance due to errors of execution in the controls of the 
system and in observations of the state of the system. 
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